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Limit cycle induced by multiplicative noise in a system of coupled Brownian motors
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We study a model consisting ofN nonlinear oscillators withglobal periodiccoupling, andlocal multiplica-
tive and additive noises. The model was shown to undergo a nonequilibrium phase transition towards a
broken-symmetry phase exhibiting noise-induced ‘‘ratchet’’ behavior. A previous study@H. S. Wio, S. Man-
gioni, and R. Deza, Physica D168-169, 184 ~2002!# focused on the relationship between the character of the
hysteresis loop, the number of ‘‘homogeneous’’ mean-field solutions, and the shape of the stationary mean-field
probability distribution function. Here, we show—as suggested by the absence of stable solutions when the
load force is beyond a critical value—the existence of a limit cycle induced by both multiplicative noise and
global periodic coupling.

DOI: 10.1103/PhysRevE.67.056616 PACS number~s!: 05.40.2a, 05.10.Gg, 05.45.2a
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I. INTRODUCTION

The study of dynamical systems has shown that li
cycles are ubiquitous in a wide range of physical applicati
@1,2#. From a physicist’s point of view, limit cycles ar
thought of as a way to balance the in- and out-energy flo
Even when these flows are not oscillatory in time, a syste
oscillatory motion can occur, equalizing such flows over o
period. An efficient pedagogical example of such a proce
based on a perturbative analysis of the nonlinear van der
oscillator, can be found in Ref.@3#. As is well known, limit
cycles are robust—structurally stable under sm
perturbations—attractors in dissipative systems without
ternal oscillations@1,2#. Usually, limit cycles arise in dy-
namical systems described by ordinary differential equati
@1,2#, but there are several examples where such kind
cycles also arise in partial differential equations~PDE! or
‘‘extended systems,’’ for instance, in the ‘‘brusselato
model for the so-called ‘‘chemical clocks’’@4,5#.

Limit cycles arise also in systems with noise. Noise
fluctuations, which are present everywhere, have been
erally considered as a factor that destroys order. Howe
several investigations on nonlinear physics during the p
decades have shown numerous examples, both in zero-
higher-dimensional systems, of nonequilibrium syste
where noise plays an ‘‘ordering’’ role. In such cases,
transfer of concepts from equilibrium thermodynamics,
order to study phenomena away from equilibrium, is not
ways adequate and many times is misleading. Some
amples of such nonequilibrium phenomena are no
induced unimodal-bimodal transitions in some ze
dimensional models~describing either concentrated system
or uniforms fields! @6#, shifts in critical points@7#, stochastic
resonance in zero-dimensional and extended systems@8,9#,
noise-delayed decay of unstable states@10#, noise-induced

*Email address: smangio@mdp.edu.ar
†Email address: wio@cab.cnea.gov.ar, wio@imedea.uib.es
1063-651X/2003/67~5!/056616~5!/$20.00 67 0566
it
s

s.
’s
e
s,
ol

ll
-

s
of

r
n-
r,
st
nd
s
e

l-
x-
-

-

spatial patterns@11#, noise-induced phase transitions in e
tended systems@12#, etc.

Here, we discuss an extended system described by PD
where noise plays a key role in controlling and inducing
limit cycle. The model that we analyze here is the one u
in Refs. @13,14# to study a ratchetlike transport mechanis
arising through a symmetry breaking, noise-induced, n
equilibrium phase transition. In a recent paper@15#, a system
with a noise-induced phase transition, based on a model
is a variant of Kuramoto’s model for coupled phase oscil
tors @16#; was analyzed. In addition to the phenomenon
anomalous hysteresis, an evidence of the existence of a
cycle for a given parameter region is also given.

The model we analyze consists of a system of periodic
coupled nonlinear phase oscillators with a multiplicati
white noise. Coupled oscillators have been used to mo
systems with collective dynamics exhibiting plenty of inte
esting properties such as equilibrium and nonequilibri
phase transitions, coherence, synchronization, segrega
and clustering phenomena. In this particular model, a ra
etlike transport mechanism arises through a symmetry bre
ing, noise-induced, nonequilibrium phase transition@13#,
produced by the simultaneous effect of coupling between
oscillators and the presence of a multiplicative noise. T
symmetry breaking does not arise in the absence of an
these two ingredients. In Ref.@13# it was also shown that the
current, as a function of a load forceF, produces an anoma
lous ~clockwise! hysteresis cycle. Recently we have report
that changing the multiplicative noise intensityQ and/or the
coupled constantK0, a transition from anomalous to norma
~counterclockwise! hysteresis is produced@14#. The result
was obtained exploiting a mean-field approximation. T
transition curve in the plane (K0 ,Q), separating the region
where the hysteresis cycle is anomalous from the one wh
it is normal, was clearly determined.

Here, we focus on the time behavior. We use a method
detecting the existence of a limit cycle based on the eva
tion of the distance between two solutions separated b
~fixed! time interval@17#. In this way, we not only show the
existence of a limit cycle forF.Fc ~with Fc a loading
©2003 The American Physical Society16-1
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threshold value!, but also determine its period. We also fou
the time dependence of the probability distribution functi
along the cycle and calculate the order parameter of
model vst, clearly showing the limit cycle. Next, we gai
insight into its origin through the study of the large coupli
limit ( K0→`). Finally, we draw some conclusions.

II. THE MODEL, MEAN FIELD, AND THE METHOD USED

For completeness, we present a brief description of
model, which is similar to the one used in Refs.@13# and
@14#. We consider a set of globally coupled stochastic diff
ential equations~to be interpreted in the sense of Stratono
ich! for N degrees of freedom~phases! Xi(t),

Ẋi52
]Ui

]Xi
1A2Tj i~ t !2

1

N (
j 51

N

K~Xi2Xj !. ~1!

This model can be visualized~at least for some paramete
values! as a set of overdamped interacting pendulums. T
second term in Eq.~1! considers the effect of thermal fluc
tuations:T is the temperature of the environment and t
j i(t) are additive Gaussian white noises with

^j i~ t !&50, ^j i~ t !j j~ t8!&5d i j d~ t2t8!. ~2!

The last term in Eq.~1! represents the interaction force b
tween the oscillators. It is assumed to fulfillK(x2y)
52K(y2x) and to be a periodic function ofx2y with
periodL52p. We adopt@13,14#

K~x!5K0sinx, K0.0. ~3!

The potentialUi(x,t) consists of a static partV(x) and a
fluctuating one. The Gaussian white noisesh i(t), with zero
mean and variance 1, are introduced in a multiplicative w
~with intensity Q) through a functionW(x). In addition; a
load forceF, producing an additional bias, is considered:

Ui~x,t !5V~x!1W~x!A2Qh i~ t !2Fx. ~4!

In addition to the interactionK(x2y), V(x) and W(x)
are also assumed to be periodic and, furthermore, to be s
metric: V(x)5V(2x) andW(x)5W(2x). This last aspect
indicates that there is no built-in ratchet effect. The form
choose is@13,14#

V~x!5W~x!52cosx2A cos 2x. ~5!

We introduce a mean-field approximation similar to t
one used in Ref.@14#. The interparticle interaction term in
Eq. ~1! can be cast in the form

1

N (
j 51

N

K~Xi2Xj !5K0@Ci~ t !sinXi2Si~ t !cosXi #. ~6!

For N→`, we may approximate Eq.~6! in the Curie-Weiss
form, replacing Ci(t)[N21( jcosXj(t) and Si(t)
[N21( jsinXj(t) by Cm[^cosXj& andSm[^sinXj&, respec-
tively. As usual, bothCm and Sm should be determined b
self-consistency. This decouples the system of stochastic
05661
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ferential equations~SDE! in Eq. ~1!, which reduces to essen
tially one Markovian SDE for the single stochastic proce
X(t)

Ẋ5R~X!1S~X!h~ t !, ~7!

with ~hereafter, the primes will indicate derivatives with r
spect tox)

R~x!52V8~x!1F2Km~x!52sinx~11K0Cm14Acosx!

1K0Smcosx1F ~8!

„whereKm(x)5K0@Cmsinx2Smcosx#… and

S~x!5A2$T1Q@W8~x!#2%

5A2$T1Q@sinx12Asin 2x#2%. ~9!

The Fokker-Planck equation~FPE! associated with the
SDE in Eq.~7! ~in Stratonovich’s sense! is

] tP~x,t !5]xS 2FR~x!1
1

2
S~x!S8~x!GP~x,t ! D

1
1

2
]xx@S2~x!P~x,t !#, ~10!

whereP(x,t) is the probability distribution function~PDF!.
In Ref. @14# we have shown that in the so-called ‘‘inte

action driven regime’’~IDR!—where the hysteretic cycle i
anomalous—and for eachF value, in addition to the two
stationary stable solutions with the corresponding values
current there are three other unstable ones. Two of th
merge with the two stable ones, yielding a closed curve
current vsF. Beyond a critical~absolute! value of the load
force F, indicated byFc , these stable solutions disappe
This does not happen for the ‘‘noise driven regime’’—whe
the hysteretic cycle is normal—where for eachF value, one
stationary stable solution exists~for small uFu even two sta-
tionary stable solutions and an unstable one exist!.

It is worth remarking here that the absence of a station
stable solution, beyond the critical valueFc in the IDR, sug-
gest the possibility that a limit cycle exists. Already in Re
@13#, in a strong coupling analysis~that is considering the
limit K0→`), it was indicated that for very largeuFu the
probability distribution function approaches a periodic lo
time behavior.

In order to analyze the existence of a limit cycle, w
exploit a method used in Ref.@17#. It is based on the mea
surement of the distance between different solutions o
system and evaluating its evolution in time. The approa
applied in Ref. @17# uses a generalization of the know
Kullback-Leibler information function@18#, which is based
on the nonextensive thermostatistics proposed by Ts
@19#. Within such a formalism, the exponential and logarit
mic functions are generalized according to the followi
definitions@17#:

expq~x!5@11~12q!x#1/(12q),

lnq~x!5
x12q21

12q
. ~11!
6-2
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The distance can be measured between an evolved in
condition and a known stable stationary solution, or betw
two solutions at different times~separated by a time interva
Dt which is fixed along the whole calculation!. In this work,
we choose the latter. In Ref.@17#, the following definition for
the distance between two solutions of a reaction-diffus
equation was adopted~valid for both indicated criteria!:

I q~Pt1Dt ,Pt!52E Pt1Dt~x,t1Dt!

3 lnqF Pt~x,t !

Pt1Dt~x,t1Dt!Gdx, ~12!

whereP represent a~probabilitylike! distribution ~necessary
to use the information theory formalism!, evaluated att and
t1Dt, according to the criterion that we have chosen.
used this definition of distance and evaluatedI q(Pt1Dt ,Pt),
using forP the PDF obtained by solving the FPE, Eq.~10!.
We adoptedq52, since it is the value for which the sens
bility of the method seems to be a maximum@17#. The FPE
was numerically solved with a Runge-Kuta method, usin
time step dt56.2531027 and a space intervaldx
50.029 44. We have tested that variations in both stepsdt
and dx, produce no changes in our results. Remembe
that Cm and Sm should be determined self-consistently,
each time step both were calculated with the modified P
As our initial condition we adopted one stationary soluti
for F,Fc calculated as in Ref.@14#. The integral in Eq.~12!
was calculated simultaneously. Furthermore, we also
tainedvm—the particle mean velocity—

vm5^Ẋ&5E
2L/2

L/2

dxFR~x!1
1

2
S~x!S8~x!GPst~x,Cm ,Sm!,

~13!

which is adopted as the order parameter like in Ref.@14#.

III. RESULTS

A. Numerical results

Figure 1 showsI q(Pt1Dt ,Pt) ~normalized to its maxi-
mum! vs t for A50.15,T52, K0510, Q53, andF51.5 ~a
set of parameters for which a stationary stable solution d
not exist: see Fig. 6 in Ref.@14#!. We observe thatI q is a
periodic function of time. This form seems to be typical f
limit cycles as shown in Ref.@17#, the period corresponding
to the distance between peaks. In Fig. 2, for the same pa
eter values, we depict the PDF at different times along
complete cycle, where the behavior resembles a wave
Fig. 3, we showvm andSm vs t. They have a time periodic
behavior, not as in the caseF<Fc , wherevm (Þ0) andSm
(Þ0) are both constants in time. We have also verified t
the transition to the limit cycle occurs just atFc ~in this case
Fc51.2).

B. Asymptotic strong coupling analysis

In order to understand the origin of the previous resu
and gain some insight about them, we have performed
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asymptotic strong coupling analysis. That is, we consi
K0→`, P→d(x2xm), hence Eq.~13! transforms into

ẋm5R~xm!1
1

2
S~xm!S8~xm!. ~14!

A simple calculation shows

ẋm52sinxm@114A cosxm#@12Q cosxm

24AQ~122 sin2xm!#1F. ~15!

This equation can be analyzed considering an effective
tential U(xm), given by

U~xm!5V~xm!2QW82~xm!/22Fxm , ~16!

FIG. 1. I q(Pt1Dt ,Pt) ~divided by its maximum! vs time t for
A50.15, T52, K0510, Q53, andF51.5 ~for this set of param-
eters there is no stationary stable solution!.

FIG. 2. PDF~P! vs x for a different timet following the com-
plete cycle~starting att52.83, and evaluated eachDt50.2444).
The parametersA, T, K0 , Q, andF as in Fig. 1.
6-3



t
ta

he

cil-

d a
le

, by
cle
es
e
we
os-
t-
ng,

r,
r.
is

un-
-

ime
t at
ce
-
e
DF

a
a

m.

a
re

S. E. MANGIONI AND H. S. WIO PHYSICAL REVIEW E67, 056616 ~2003!
that allows us to rewrite Eq.~14! as

ẋm52
]U~xm!

]x
. ~17!

Figure 4 shows the solution of Eq.~15!, ẋm vs t, for both
situations: just below and aboveFc . It was observed tha
while for F,Fc , after a transient, the solution becomes s
tionary, forF.Fc it becomes oscillatory. In the first case,xm
is constant in time but it does not implyvm50 because, it
should be calculated withSm5sin(xm)Þ0, not as in the case
with ẋm . Figure 5 shows the effective potentialU vs xm for
the same cases, and also forF50. It is apparent that in the
first case (F,Fc), the potential has only one minimum
while for the second one, both possible minima are was

FIG. 3. vm and Sm vs time t. The parametersA, T, K0 , Q,
andF as in Fig. 1. The thick line is forvm and the thin line is for
Sm .

FIG. 4. Solution of Eq.~15! ẋm vs t, for both situations, just
below and aboveFc51.2. The parametersA, T, K0, andQ as in
Fig. 1. We observe that while forF,Fc , after a transient, the
solution becomes stationary, forF.Fc it is oscillatory. The param-
eters areK0510 andQ53. The solid line indicates the caseF
.Fc and the dashed line the caseF,Fc .
05661
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out. The latter happens just when the transition to the os
lating regime occurs. It is worth remarking here that, ifK0
→`, the hysteresis cycle is anomalous and closed, an
critical load force establishing a threshold for a limit cyc
transition always exists.

IV. CONCLUSIONS

Several papers have reported on research where
changing a control parameter, a transition to a limit cy
occurs@20#. However, studies on the existence of limit cycl
under ~or induced by! the influence of noise are scarc
@15,21,22#. Such an aspect was analyzed here, where
have studied a system of periodically coupled nonlinear
cillators with multiplicative white noises, yielding a ratche
like transport mechanism through a symmetry-breaki
noise-induced, nonequilibrium phase transition@13,14#. The
model includes a load forceF, used as a control paramete
so that the graph of current vsF shows a hysteretic behavio

In Ref. @14# we have found that in the IDR the cycle
anomalous, yielding a closed curve current vsF when the
stationary stable solutions merge with two of the three
stable ones. ForF.Fc ~force value at which a stable solu
tion merges with an unstable one!, there are no stationary
stable solutions. Here, we have shown, by analyzing the t
evolution of the distance between different solutions, tha
F5Fc a transition to a limit cycle occurs. Such a distan
shows, forF.Fc , a typical periodic behavior providing evi
dence for a limit cycle@17#. Focusing on the analysis of th
time behavior, we have shown the evolution of both the P
and the current, showing in both cases the time periodicity~a
time evolution of the PDF resembling a wave!. In order to
understand the origin of this transition, we have made
‘‘strong coupling’’ limit analysis. It indicates that the minim
of the effective potential are ‘‘washed out’’ asF is increased
and all the stationary stable solution are removed with the

FIG. 5. U vs xm just below and aboveFc51.2. Also the case
F50 is shown. The parameters areA50.15,K0510, andQ53. It
is observed that in the first case (F,Fc) the potential has at least
minimum, while for the second one both possible minima a
washed out. The solid line indicates the case just aboveFc (Fc

51.2), the dotted indicates the caseF,Fc , and dashed one the
caseF50.
6-4
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As indicated in the Introduction, limit cycles balance t
in- and out- energy flows—even when these flows are
oscillatory in time—through a system’s oscillatory motio
that equalizes such flows over one period. In the pres
case, we have found a limit cycle in a dynamical syst
described by PDE’s, where the energy inflow is provided
both the load forceF and the noise terms, while energy
lost ~as the system is an overdamped one! proportionally to
the particle’s velocity. A remarkable aspect is the fact tha
is the multiplicative noise intensity which is the parame
controlling the bifurcation towards the limit cycle.

Summarizing, for this model~that is, just one example
among many possible others!, we have found a transition
towards a limit cycle induced by both, a multiplicative noi
nd

-

:
gy

v.

v.

e
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and a global periodic coupling. However, when the noise
coupling are not present, such a transition does not hap
This is a different feature of these systems showing a ra
etlike transport mechanism arising through a symme
breaking, noise-induced, nonequilibrium phase transiti
Also, it is another example where the presence of a multi
cative noise contributes to build up some form of order.
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